(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Comments: _____ Collected By & Phone# S. Perkins x 6805 and Leah Desmarais x 0697

Sample Location /ID	Date/Time Sampled	# of Containe rs	Matrix 8260B	Other / Notes	Lab ID # (For Lab Use Only)
TRIP BLANK	6/11/04 16:00	2	AQ .		A75678-1
AE-I	6/15/04 10:17		AQ		A75678-2 06/15 10:12
AE-2	11:27	-	AQ		A75678-3
AE-4	14113	. /	AQ		A75678-4 06/15 14:12
AE-21	6/16/64 11:25		AQ		A75678-5 06/16 11:25
AE-22	11:43	+	AQ		A75678-6
SH-125	6 15 64 13.05		AQ		A75678-7 06/15 13:05
SH-125dy	15.08		AQ		A75678-8 06/15 13:08
SH-145	12:05		AQ		A75678-9
SH-14 I	11.05		AQ		A75678-10
54-140	10:15		AQ		A75678-11 06/15 10:15
SH-215	6/14/04 12:14		AQ		A75678-12 06/1/5 12:14

Preservation: HCL and ice		
Relinquished By	Date and Time 6/16/04 13:35 Received By	Matrix: A= Air S= Soil AQ= Aqueous π Other:
Relinquished By		By (). Section No.: 22.0
Page of	Data Reviewed By	Pate 07-07-04 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Collected By & Phone#

S. Perkins x 6805 and Leah Desmarais x 0697

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697

Comments:

Sample Location /ID	Date/Time Sampled	# of Contain rs Ratrix	8260B	Other / Notes	Lab ID # (For Lab Use Only)
SH-31I	614/04 11:13	AQ			A75678-13 06/14 11:12
SH-01D	10:17	AQ			A75678-14
5H-963	14:00	AQ			A75678-15 06/14 14:00
ZH-9B2	11.30	AQ			A75678-16 06/14 11:20
2PG-4Z	(3.40	AQ			A75678-17 06/14 12:40
SH-335	6/16/64 13:37	AQ			A75678-18
SH-445	6/14/04 14/11	AQ			A75678-19 06/14 14:11
SH-S65	6/16/04 9/15	AQ			A75678-20 06/16 09:15
SH-57S	10:20	AQ			A75678-21 06/16 10:20 —
SWWP-4	6115/61 14:34	AQ			A75678-22
SWW 9-10	611/104 18:15	AQ			A75678-23 06/14 13:15
SWWP-12		AQ			A75678-24 06/15 14:55
Preservation: HCL and ice					
Relinquished By SOMMONDS	Date and Time() ()/()	13:35	_Received By	Matrix: A= Air	S= Soil AQ= Aqueous π Other:
Relinquished By	Date and Time			~	Section No.: 22.0
Page $\frac{3}{2}$ of $\frac{3}{2}$	Data Reviewed	I ву <u>С</u>	.B	Date 07 - 07 - 01	Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Sample Location /ID	Date/Time Sampled	# of Containe rs	Matrix	8260B		Other / Notes	Lab ID # (For Lab Use Only)
2 W P-14	6/15/04 13:55	1	AQ	V			A75678-25 06/15 13:59
SWWP-15	14:30		AQ				A75678-26 06/15 14:39
SWWP-15 SWWP-17	6/14/04 11:55	1	AQ				A75678-27
			AQ				-
			AQ				
			AQ				
			AQ				
			AQ		-		
			AQ				
			AQ				
			AQ				
			AQ				
nquished By	Date and Time 6/16/04	1 13.	35	Received By			S= Soil AQ= Aqueous π Other:

BEEDE WELLS Site # 04-000-7307

VC)Cs
	mples
AE-1	SH-22S
AE-2	SH-22D
AE-4	SH-22R
AE-12	SH-23S
AE-14	SH-23I
AE-17D	SH-23D
AE-18S	SH-24S
AE-18D	SH-24I
AE-21	SH-24D
AE-22 1	SH-25S
	SH-25I
SH-2S	SH-25D
SH-21	SH-26S
SH-2D	SH-27S
SH-3S	SH-28S
SH-3I	SH-29S (
SH-3D	SH-33S
SH-4S	SH-38S
SH-41	SH-41S
SH-4D	SH-43S
SH-12S	SH-44S
SH-14S)	SH-56S
SH-14I *	SH-57S
SH-14D 4	
SH-15S	
SH-15I	
SH-15D	SWWP-41
SH-19S	SWWP-10
SH-19I	SWP-124
SH-19D	900 WP-14 M
SH-20S	SUWP-15
SH-20I	SW WP-17 €
SH-20D	WP-18
SH-21S	
SH-21I	
SH-21D	
-4-4-1 1 4-4-	

AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D SH-24D SH-24D SH-24D SH-24D SH-24D SH-24D SH-24D		I Attenuation 27 samples
AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		.r samples
AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	•••	AB-2 -LD
AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I SH-24D		AE-12
AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-14
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-17D
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-18S
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-18D
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	gun.	SH-2S
SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		
SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S		SH-2D
SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		
SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I SH-24D		SH-3D
SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I		SH-4S
SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I SH-24D		SH-41
SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D	**	SH-4D
SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24I		SH-15S
SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S SH-24D		SH-15!
SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		SH-22S
SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		SH-22D
SH-23I SH-23D SH-24S SH-24I SH-24D		SH-22R
SH-23D SH-24S SH-24I SH-24D		SH-23S
SH-24S SH-24I SH-24D	1	SH-231
SH-24I SH-24D		SH-23D
SH-24D		
		SH-24I
SH-43S		
		SH-43S
		American

Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins

Leah Desmarais

^{*} Natural Attenuation Parameters =

FOR LABORATORY USE ONLY

DI .				==: Likboltat UK Filah, IINI V
Physical Inspection of the sample	Yes	No	NA	Inspection Comments 16
containers and submitted paperwork	1	ł	1	Inspection Comments and Sample Information
PROJECT (EPA) # current?		 	+	<u>-1</u>
Temperature of the sample or temperature			ļ	Project (EPA) # Of TYOU 30
Ciank	ł			
Condition of sample(s) acceptable?	 			Temperature °C
(Check for leakage, breakage, and	1 /	1		
volume) Do VOA's or Radon have air				
bubbles?		1	1	1
		l	1	1
Was the paperwork submitted adequate			 	
and completely filled out? Hold times			İ	
acceptable?			ľ	
Do the paperwork and sample labels			 	
agree?			1	
Preservation listed on the sample			<u> </u>	
bottle(s)?				
How did the lebens		-		
How did the laboratory receive the				Hand delivered or
sample(s)?				
Was the sample(s) received in a cooler?				Mail
now many coolers were received?		- 1		Number of Coolers
What was used to lower the temp?				lce
		I	ı	Cold Packs(s)
				Nothing
Was the Client contacted by phone?	L	IST BEL	OW TO	D BE COMPLETED ONLY IF APPLICABLE
was the entire contacted by phone?	1			DateTime
Reason			i	1 11116
	1	j	1	Initials
Additional Comments:				minals
1			- 1	
	- 1		1	
	1	- 1	1	
			- 1	
f present, was the Custody of Seal intact?				
Was the sample(s) aut				
Was the sample(s) subcontracted? List the	T			Contract Lab:
amples which were sent and tests	- 1		- [
equested:	1];	Deat (Tr)
l .			1,	Date/Time O
1	- 1	1		
		1.		Name of Staff Releasing Sample:
·				Name of Staff Releasing Sample:
				(1) Y
ompleted By:	`			1604

Date: 0 604

NA = Not Applicable

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : TRIP BLANK

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/11/2004 16:00

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 23-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-1

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 10:12

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	3.5	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	9.2	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-2

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 11:27

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	7.3	2	m/p-Xylenes	BDL	2
o-Xylene	14	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	7.3	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	10	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	22	2	sec-Butylbenzene	4	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	3	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	11	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 27-JUN-04

Authorized Signature: (/

Luco & Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : AE-4

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:12

Misc ID :

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	55	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	19	2	m/p-Xylenes	36	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	4.9	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	6.9	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	17	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	46	2	sec-Butylbenzene	2.4	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	2.3	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	45	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature Lines A. Barmelle

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

MCL=Maximum Contaminent Level

> = Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent
J =Approximate Level

mg/L = milligrams per Liter

< = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-21

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 11:25

Misc ID

Sample #: A75678-5

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL.	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

> = Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : AE-22

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 11:47

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL,	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-12S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 13:05

Misc ID :

Sample #: A75678-7

Category: IN HOUSE

Matrix : Aqueous

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride Bromomethane BDL 2 Chloroethane Trichlorofluoromethane BDL 2 Diethyl ether BDL 2 1.1-Dichloroethene BDL 2 Acetone BDL 10 Carbon disulfide BDL 2 Methylene chloride BDL tert-Butanol (TBA) BDL 10

	222	2	tert-Bucanor (IBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	13	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2

EPA Method : SW-8260 Units: ug/L

Report Comments: The batch ending QC was not w/in acceptable limits for MtBE (126%R);

BDI.

Limits 80 - 120%R.

Measure date: 28-JUN-04

Naphthalene

Authorized Signature:

Luca de Barmelle

BDL

1,2,3-Trichlorobenzene

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-12S DUP

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/06/04

Log in Date : 06/16/2004

Collection Date: 06/15/2004 13:08

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	13	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Report Comments: The batch ending QC was not w/in acceptable limits for MtBE (126%R);

Limits = 80 - 120%R.

Measure date: 28-JUN-04

Authorized Signature:

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-14S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04

Project #: 04-0007307

: 06/16/2004 Log in Date Completion Date: 07/06/04

Collection Date: 06/15/2004 12:05

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter

ug/L = micrograms per Liter

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-14I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Sample #: A75678-10 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/15/2004 11:05

Log in Date : 06/16/2004 Completion Date: 07/06/04

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

Luca & Barine

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-14D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Completion Date: 07/06/04

Collection Date: 06/15/2004 10:15

: 06/16/2004

Misc ID

Log in Date

Results RDL Results RDL Analyte Analyte BDL 2 Dichlorodifluoromethane BDI. 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane BDI. 2 BDL 2 Trichlorofluoromethane Chloroethane BDL 1,1-Dichloroethene BDL. 2 Diethyl ether BDL BDL 10 Carbon disulfide Acetone BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDL 2 Methyl-t-butyl ether (MTBE) BDL trans-1,2-Dichloroethene BDL. Diisopropyl ether (DIPE) BDL 1,1-Dichloroethane 2 BDT. 2,2-Dichloropropane BDL Ethyl-t-butyl ether (ETBE) 2 BDI. cis-1,2-Dichloroethene BDI. 2 2-Butanone (MEK) 1.0 BDT. Bromochloromethane BDL Chloroform BDL 1,1-Dichloropropene BDL. Tetrahydrofuran(THF) BDL Carbon tetrachloride RDL 2 Benzene BDL 2 1,1,1-Trichloroethane BDL 1.2-Dichloroethane 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL BDL. 2 Dibromomethane BDL 1,2-Dichloropropane BDL BDI. 2 Bromodichloromethane Methyl methacrylate BDL cis-1,3-Dichloropropene BDL 2 trans-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL Dibromochloromethane BDL 2 Toluene BDL Tetrachloroethene BDL 2 1,3-Dichloropropane BDL BDL 2-Hexanone BDL 1.2-Dibromoethane BDL 2 1,1,1,2-Tetrachloroethane BDL Chlorobenzene BDL BDL 2 m/p-Xylenes Ethvlbenzene BDL o-Xylene BDL 2 Styrene BDL BDL 2 Isopropylbenzene Bromoform BDL BDL 2 1,2,3-Trichloropropane 1,1,2,2-Tetrachloroethane 2 BDL Bromobenzene BDI. n-Propylbenzene BDL o-Chlorotoluene BDL 2 p-Chlorotoluene

EPA Method : SW-8260

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4-Trichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

n-Butylbenzene

Naphthalene

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

2

2

2

2

2

BDL

BDL

BDL

BDL

BDL

BDL

BDL

ug/L = micrograms per Liter

BDL = Below Detection Limit

tert-Butylbenzene sec-Butylbenzene

p-Isopropyltoluene 1,2-Dichlorobenzene

Hexachlorobutadiene

1,2,3-Trichlorobenzene

1,2-Dibromo-3-chloropropane

mg/kg = milligrams per Kilogram

= Greater Than

BDL

BDL

BDL

BDL

BDL

BDL

BDL

2

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= milligrams per Liter ma/L = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

MCL=Maximum Contaminent Level

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site

Collectby : S PERKINS/L DESMARAIS Locator : SH-21S

: PLAISTOW

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

: 06/16/2004 Log in Date Completion Date: 07/06/04

Collection Date: 06/14/2004 12:14

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1.1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

Lua de Barmelle

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-21I

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Sample #: A75678-13

Category: IN HOUSE

Matrix : Aqueous

: 06/16/2004

Completion Date: 07/06/04

Collection Date: 06/14/2004 11:12

Misc ID

Log in Date

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane 2 BDL Chloroethane BDL Trichlorofluoromethane 2 2 BDL. Diethyl ether BDI. 1.1-Dichloroethene 2 BDL 2 Acetone BDI. 10 Carbon disulfide BDL Methylene chloride BDL 2 tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) 1,1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL 2,2-Dichloropropane Ethyl-t-butyl ether (ETBE) BDI. 2 BDL cis-1,2-Dichloroethene BDL 2 2-Butanone (MEK) BDL 1.0 Bromochloromethane BDI. 2 Chloroform BDI. 2 Tetrahydrofuran (THF) 1,1-Dichloropropene BDL 10 BDL 2 Carbon tetrachloride BDL 2 Benzene BDL 2 1,2-Dichloroethane BDL 1,1,1-Trichloroethane BDL 2 2-Methoxy-2-methylbutane (TAME) BDL 2 Trichloroethene BDL 1,2-Dichloropropane BDL Dibromomethane BDL Methyl methacrylate BDL Bromodichloromethane BDL cis-1,3-Dichloropropene BDL trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDL Tetrachloroethene 1,3-Dichloropropane BDL 2 BDL 2-Hexanone BDL 10 1,2-Dibromoethane BDL Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDL Ethylbenzene BDL 2 m/p-Xylenes BDL o-Xylene BDL 2 Styrene BDL Bromoform BDL Isopropylbenzene BDL 1,1,2,2-Tetrachloroethane BDL 1,2,3-Trichloropropane BDL Bromobenzene BDL 2 BDL n-Propylbenzene o-Chlorotoluene BDL 2 BDL p-Chlorotoluene 1,3,5-Trimethylbenzene BDL 2 BDL. tert-Butylbenzene 1,2,4-Trimethylbenzene 2 BDL sec-Butylbenzene BDL 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 1,4-Dichlorobenzene BDL 2 BDL 1,2-Dichlorobenzene n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature: Linea d. Barmille

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= milligrams per Liter = Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-21D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 10:17

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

= Greater Than

Category: IN HOUSE Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-26S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004

Collection Date: 06/14/2004 14:00

Completion Date: 07/06/04

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	2.8	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-28S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 11:20

Misc ID

Category: IN HOUSE

Matrix : Aqueous

Analyte	Results	RDL	Analyte	Results	DDI
Dichlorodifluoromethane	BDL	2	Chloromethane	Results BDL	RDL 2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL.	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 27-JUN-04

Authorized Signature: Linea A. Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-29S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 12:40

Misc ID :

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260 Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

us & Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level > = Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SH-33S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 10:37

Misc ID :

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL. 2 Chloromethane BDL 2 Vinyl chloride BDL 2 Bromomethane BDL. 2 Chloroethane BDL 2 Trichlorofluoromethane BDI. 2 Diethyl ether BDL 1,1-Dichloroethene BDL 2 Acetone BDL Carbon disulfide BDL 2 Methylene chloride BDL 2 tert-Butanol (TBA) BDL trans-1,2-Dichloroethene BDL 2 Methyl-t-butyl ether (MTBE) BDL 2 1,1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDI. 2 Ethyl-t-butyl ether (ETBE) BDL 2,2-Dichloropropane BDL cis-1,2-Dichloroethene 2-Butanone (MEK) BDL 2 BDI. Bromochloromethane BDL Chloroform RDI. Tetrahydrofuran (THF) 1,1-Dichloropropene BDL BDI. 2 Carbon tetrachloride BDL Benzene BDL 1,2-Dichloroethane BDL 2 1,1,1-Trichloroethane BDL 2-Methoxy-2-methylbutane (TAME) BDL Trichloroethene BDL 1,2-Dichloropropane BDL 2 Dibromomethane BDL Methyl methacrylate BDL 2 Bromodichloromethane BDL 2 cis-1,3-Dichloropropene BDI. 2 trans-1,3-Dichloropropene BDL 4-Methyl-2-pentanone (MIBK) BDL 10 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDL 2 Toluene BDL Tetrachloroethene BDL 2 1,3-Dichloropropane BDL 2-Hexanone BDL 10 1.2-Dibromoethane BDL Chlorobenzene BDL 2 1,1,1,2-Tetrachloroethane BDL Ethylbenzene BDL 2 m/p-Xylenes BDL o-Xylene BDL 2 Styrene BDL 2 Bromoform BDL 2 Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDI. 2 1,2,3-Trichloropropane BDL 2 Bromobenzene BDI. 2 n-Propylbenzene BDL 2 o-Chlorotoluene BDI. 2 p-Chlorotoluene BDL. 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDI. 2 1,2,4-Trimethylbenzene BDL sec-Butylbenzene BDL 2 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene BDL n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDI. 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

Zuco d. Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter
RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram
MCL=Maximum Contaminent Level

> = Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-44S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 14:11

Misc ID

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	4	Chloromethane	Results	RDL
Vinyl chloride	BDL	4	Bromomethane	BDL	4
Chloroethane	6.3	4	Trichlorofluoromethane	BDL	4
Diethyl ether	BDL	4	1,1-Dichloroethene	BDL	4
Acetone	BDL	20	Carbon disulfide	BDL	4
Methylene chloride	BDL	4	tert-Butanol (TBA)	BDL	4
trans-1,2-Dichloroethene	8.2	4	Methyl-t-butyl ether (MTBE)	BDL	20
1,1-Dichloroethane	17	4	Diisopropyl ether (DIPE)	BDL	4
Ethyl-t-butyl ether (ETBE)	BDL	4	2,2-Dichloropropane	BDL	4
cis-1,2-Dichloroethene	316	4	2-Butanone (MEK)	BDL	4
Bromochloromethane	BDL	4	Chloroform	BDL	20
Tetrahydrofuran(THF)	BDL	20	1,1-Dichloropropene	BDL	4
Carbon tetrachloride	BDL	4	Benzene	BDL	4
1,2-Dichloroethane	BDL	4	1,1,1-Trichloroethane	5.4	4
2-Methoxy-2-methylbutane (TAME)	BDL	4	Trichloroethene	26 BDL	4
1,2-Dichloropropane	BDL	4	Dibromomethane	BDL	4
Methyl methacrylate	BDL	4	Bromodichloromethane	BDL	4
cis-1,3-Dichloropropene	BDL	4	trans-1,3-Dichloropropene	BDL	4
4-Methyl-2-pentanone (MIBK)	BDL	20	1,1,2-Trichloroethane	BDL	4
Dibromochloromethane	BDL	4	Toluene	BDL	4
Tetrachloroethene	BDL	4	1,3-Dichloropropane	BDL	4
2-Hexanone	BDL	20	1,2-Dibromoethane	BDL	4
Chlorobenzene	BDL	4	1,1,1,2-Tetrachloroethane	BDL	4
Ethylbenzene	BDL	4	m/p-Xylenes	BDL	4
o-Xylene	15	4	Styrene	BDL	4
Bromoform	BDL	4	Isopropylbenzene	BDL	4
1,1,2,2-Tetrachloroethane	BDL	4	1,2,3-Trichloropropane	BDL	4
Bromobenzene	BDL	4	n-Propylbenzene	BDL	4
o-Chlorotoluene	BDL	4	p-Chlorotoluene	BDL	4
1,3,5-Trimethylbenzene	BDL	4	tert-Butylbenzene	BDL	4
1,2,4-Trimethylbenzene	10	4	sec-Butylbenzene	BDL	4
1,3-Dichlorobenzene	BDL	4	p-Isopropyltoluene	BDL	4
1,4-Dichlorobenzene	BDL	4	1,2-Dichlorobenzene	BDL	4
n-Butylbenzene	BDL	4	1,2-Dibromo-3-chloropropane	_	4
1,2,4-Trichlorobenzene	BDL	4	Hexachlorobutadiene		4
Naphthalene	BDL	4	1,2,3-Trichlorobenzene		4
				וועם	4

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per KilogramMCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

J =Approximate Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-56S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 09:15

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL.	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL.	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	_
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene		2
			-,-,rrentorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

= Less Than

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

mg/L = milligrams per Liter

MCL=Maximum Contaminent Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SH-57S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/16/2004 10:20

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL.	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL,	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDI.	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
			•		-

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : SWWP-4

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:34

: Aqueous

Misc ID

Matrix

Analyte Results RDL Analyte Results RDL Dichlorodifluoromethane BDL 2 Chloromethane BDI. 2 Vinyl chloride BDL 2 Bromomethane BDL 2 Chloroethane BDL 2 Trichlorofluoromethane BDL. 2 Diethyl ether BDL 2 1,1-Dichloroethene \mathtt{BDL} Acetone BDL 10 Carbon disulfide BDL 2 Methylene chloride BDL tert-Butanol (TBA) BDL 10 trans-1,2-Dichloroethene BDL Methyl-t-butyl ether (MTBE) 2 1.1-Dichloroethane BDL 2 Diisopropyl ether (DIPE) BDL. 2 Ethyl-t-butyl ether (ETBE) BDL 2 2,2-Dichloropropane BDL 2 cis-1,2-Dichloroethene BDL 2 2-Butanone (MEK) BDI. 10 Bromochloromethane BDI. 2 Chloroform BDL 2 Tetrahydrofuran (THF) BDI. 10 1,1-Dichloropropene BDL 2 Carbon tetrachloride BDL Benzene BDL 2 1,2-Dichloroethane BDL 1,1,1-Trichloroethane BDL. 2 2-Methoxy-2-methylbutane (TAME) BDL Trichloroethene BDL 2 1,2-Dichloropropane BDL 2 Dibromomethane BDL 2 Methyl methacrylate BDL 2 Bromodichloromethane BDI. 2 cis-1,3-Dichloropropene BDI. 2 trans-1,3-Dichloropropene BDL 2 4-Methyl-2-pentanone (MIBK) BDL 1.0 1,1,2-Trichloroethane BDL 2 Dibromochloromethane BDI. 2 Toluene BDL 2 Tetrachloroethene BDT. 2 1,3-Dichloropropane BDL 2-Hexanone BDL 10 1,2-Dibromoethane BDL Chlorobenzene BDL 1,1,1,2-Tetrachloroethane 2 BDL 2 Ethylbenzene BDL 2 m/p-Xylenes BDL 2 o-Xylene BDL 2 Styrene BDL 2 Bromoform BDI. 2 Isopropylbenzene BDL 2 1,1,2,2-Tetrachloroethane BDL 1,2,3-Trichloropropane BDL 2 Bromobenzene BDL 2 n-Propylbenzene BDL 2 o-Chlorotoluene BDI. 2 p-Chlorotoluene BDL 2 1,3,5-Trimethylbenzene BDL 2 tert-Butylbenzene BDL 1,2,4-Trimethylbenzene BDI. 2 sec-Butylbenzene BDL 1,3-Dichlorobenzene BDL 2 p-Isopropyltoluene BDL 2 1,4-Dichlorobenzene BDL 2 1,2-Dichlorobenzene BDL 2 n-Butylbenzene BDL 2 1,2-Dibromo-3-chloropropane BDL 2 1,2,4-Trichlorobenzene BDL 2 Hexachlorobutadiene BDL 2 Naphthalene BDL 1,2,3-Trichlorobenzene BDL 2

EPA Method : SW-8260 Units: ug/L

Report Comments: The batch ending QC for MtBE was not w/in acceptable limits (126%R); QC Limits = 80 - 120R.

Authorized Signature:

ma d. Barulle

Measure date: 28-JUN-04

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75678-23 Category: IN HOUSE Matrix : Aqueous

Collection Date: 06/14/2004 13:15

Log in Date : 06/16/2004 Completion Date: 07/06/04

Misc ID

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-10

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Analyte	Results	RDL	Analyte		
Dichlorodifluoromethane	BDL	2	Chloromethane	Results	RDL
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2		BDL	2
Diethyl ether	BDL	2	Trichlorofluoromethane	BDL	2
Acetone	BDL	10	1,1-Dichloroethene	BDL	2
Methylene chloride	BDL	2	Carbon disulfide	BDL	2
trans-1,2-Dichloroethene	BDL	2	tert-Butanol (TBA)	BDL	10
1,1-Dichloroethane	BDL	2	Methyl-t-butyl ether (MTBE)	2.7	2
Ethyl-t-butyl ether (ETBE)	BDL	2	Diisopropyl ether (DIPE)	BDL	2
cis-1,2-Dichloroethene	BDL	2	2,2-Dichloropropane	BDL	2
Bromochloromethane	BDL	2	2-Butanone (MEK) Chloroform	BDL	10
Tetrahydrofuran(THF)	BDL	10		BDL	2
Carbon tetrachloride	BDL	2	1,1-Dichloropropene	BDL	2
1,2-Dichloroethane	BDL	2	Benzene	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	1,1,1-Trichloroethane	BDL	2
1,2-Dichloropropane	BDL	2	Trichloroethene	BDL	2
Methyl methacrylate	BDL	2	Dibromomethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	Bromodichloromethane	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	trans-1,3-Dichloropropene	BDL	2
Dibromochloromethane	BDL	2	1,1,2-Trichloroethane Toluene	BDL	2
Tetrachloroethene	BDL	2		BDL	2
2-Hexanone	BDL	10	1,3-Dichloropropane	BDL	2
Chlorobenzene	BDL	2	1,2-Dibromoethane	BDL	2
Ethylbenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
o-Xylene	BDL	2	m/p-Xylenes	BDL	2
Bromoform	BDL	2	Styrene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	Isopropylbenzene	BDL	2
Bromobenzene	BDL	2	1,2,3-Trichloropropane	BDL	2
o-Chlorotoluene	BDL	2	n-Propylbenzene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	p-Chlorotoluene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	sec-Butylbenzene	BDL	2
1,4-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
1,2,4-Trichlorobenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
Naphthalene	BDL	2	Hexachlorobutadiene	BDL	2
	221	4	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 27-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

J =Approximate Level

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-12

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:55

Misc ID

Analyte	Results	RDL	:Analyte	Results	DDI
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	RDL 2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS

Locator : WP-14

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 13:55

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran (THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL,	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2
				-	-

EPA Method : SW-8260

Units: ug/L

Measure date: 29-JUN-04

Authorized Signature:

Luca de Barmelle

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-15

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/15/2004 14:30

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDI.	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	
		-	-,2,3 IIICHIOIODENZENE	יותמ	2

EPA Method : SW-8260

Units: ug/L

Measure date: 29-JUN-04

Authorized Signature:

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent J =Approximate Level

mg/L = milligrams per Liter = Less Than pCi/L = pico Curies per Liter RDL=Reporting Detection Limit

Category: IN HOUSE

Matrix : Aqueous

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Site : PLAISTOW

Collectby : S PERKINS/L DESMARAIS Locator : SWWP-17

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Account #: 04-01-04 Project #: 04-0007307

Log in Date : 06/16/2004 Completion Date: 07/06/04

Collection Date: 06/14/2004 11:55

Misc ID

Analyte	Results	RDL	Analyte	Results	RDL
Dichlorodifluoromethane	BDL	2	Chloromethane	BDL	2
Vinyl chloride	BDL	2	Bromomethane	BDL	2
Chloroethane	BDL	2	Trichlorofluoromethane	BDL	2
Diethyl ether	BDL	2	1,1-Dichloroethene	BDL	2
Acetone	BDL	10	Carbon disulfide	BDL	2
Methylene chloride	BDL	2	tert-Butanol (TBA)	BDL	10
trans-1,2-Dichloroethene	BDL	2	Methyl-t-butyl ether (MTBE)	BDL	2
1,1-Dichloroethane	BDL	2	Diisopropyl ether (DIPE)	BDL	2
Ethyl-t-butyl ether (ETBE)	BDL	2	2,2-Dichloropropane	BDL	2
cis-1,2-Dichloroethene	BDL	2	2-Butanone (MEK)	BDL	10
Bromochloromethane	BDL	2	Chloroform	BDL	2
Tetrahydrofuran(THF)	BDL	10	1,1-Dichloropropene	BDL	2
Carbon tetrachloride	BDL	2	Benzene	BDL	2
1,2-Dichloroethane	BDL	2	1,1,1-Trichloroethane	BDL	2
2-Methoxy-2-methylbutane (TAME)	BDL	2	Trichloroethene	BDL	2
1,2-Dichloropropane	BDL	2	Dibromomethane	BDL	2
Methyl methacrylate	BDL,	2	Bromodichloromethane	BDL	2
cis-1,3-Dichloropropene	BDL	2	trans-1,3-Dichloropropene	BDL	2
4-Methyl-2-pentanone (MIBK)	BDL	10	1,1,2-Trichloroethane	BDL	2
Dibromochloromethane	BDL	2	Toluene	BDL	2
Tetrachloroethene	BDL	2	1,3-Dichloropropane	BDL	2
2-Hexanone	BDL	10	1,2-Dibromoethane	BDL	2
Chlorobenzene	BDL	2	1,1,1,2-Tetrachloroethane	BDL	2
Ethylbenzene	BDL	2	m/p-Xylenes	BDL	2
o-Xylene	BDL	2	Styrene	BDL	2
Bromoform	BDL	2	Isopropylbenzene	BDL	2
1,1,2,2-Tetrachloroethane	BDL	2	1,2,3-Trichloropropane	BDL	2
Bromobenzene	BDL	2	n-Propylbenzene	BDL	2
o-Chlorotoluene	BDL	2	p-Chlorotoluene	BDL	2
1,3,5-Trimethylbenzene	BDL	2	tert-Butylbenzene	BDL	2
1,2,4-Trimethylbenzene	BDL	2	sec-Butylbenzene	BDL	2
1,3-Dichlorobenzene	BDL	2	p-Isopropyltoluene	BDL	2
1,4-Dichlorobenzene	BDL	2	1,2-Dichlorobenzene	BDL	2
n-Butylbenzene	BDL	2	1,2-Dibromo-3-chloropropane	BDL	2
1,2,4-Trichlorobenzene	BDL	2	Hexachlorobutadiene	BDL	2
Naphthalene	BDL	2	1,2,3-Trichlorobenzene	BDL	2

EPA Method : SW-8260

Units: ug/L

Measure date: 28-JUN-04

Authorized Signature:

Luco de Bar

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL=Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram MCL=Maximum Contaminent Level

= Greater Than

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026103-IN INVOICE DATE: 07/06/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596

RIFS

PLAISTOW

PAGE: 1

08/05/04

Sales cd	Description			TT
Jaies ca	Description	Quantity	Cost	Amount
	A75678-1			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-10]]
10200	VOA-8260 AQUEOUS A75678-11	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	100 00
1	A75678-12	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10000	A75678-13			120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-14 VOA-8260 AQUEOUS	4 000		
10200	A75678-15	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75678-16	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-17			
18260	VOA-8260 AQUEOUS A75678-18	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1 000	100 00	100.00
	A75678-19	1.000	120.00	120.00
18260	RVOA-8260 AQUEOUS	1.000	120.00	120.00
	BA75678-2	_ : : : :	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120,00 Invoice Total:	「 120.00 ¬
			invoice lotal:	

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please	pay	this	amo	unt	:
,\$				_	٦
ĮΨ					

Project Number: 04-0007307

Invoice Number: 0026103

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES**

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026103-IN INVOICE DATE: 07/06/04 DUE DATE: **HDES**

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

08/05/04

Sales cd	Description	Quantity	Cost	Amount
	A75678-20			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-21			
18260	VOA-8260 AQUEOUS A75678-22	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
}	A75678-23		120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-24 VOA-8260 AQUEOUS	1 000	100.00	100.00
10200	A75678-25	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
	A75678-26		, , , ,	
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
18260	A75678-27 VOA-8260 AQUEOUS	1.000	120.00	100 00
10200	A75678-3	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10060	A75678-4		[
18260	VOA-8260 AQUEOUS A75678-5	1.000	120.00	120.00
18260	RVOA-8260 AQUEOUS	1.000	120.00	120.00
	BA75678-6	1.000	120.00	120.00
18260	VOA-8260 AQUEOUS	1.000	120,00 Invoice Total:	$\begin{bmatrix} \overline{120.00} \end{bmatrix}$

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

	•	•		
\$ 	_	_		 _
 		$\overline{}$	_	

Project Number: 04-0007307

Invoice Number: 0026103

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026103-IN INVOICE DATE: 07/06/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596

RIFS

PLAISTOW

PAGE: 3

08/05/04

Sales cd	Description			
Sales cd	Description	Quantity	Cost	Amount
	A75678-7			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10050	A75678-8			
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
10000	A75678-9			[]
18260	VOA-8260 AQUEOUS	1.000	120.00	120.00
!				
[İ	!
[] [
i []				
•				
]
[[
	REVIEW THIS INVOICE THOROUGHLY;	MAKE ALL CH	ANGES	
	BEFORE MONTH'S END; PAYMENT IS	AUTOMATIC FRO	OM FUND	
				5,240.007
			Invoice Total:	Tr. — — — —

Make checks payable to: **Treasurer State of NH** PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

3,240.00

Project Number: 04-0007307

Invoice Number: 0026103

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

4(

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH Contact: Leah Desmarais x 0697 Comments: S. Perkins x 6805 and Leah Desmarais x 0697 Collected By & Phone# Total Mn **Total** Fe Matrix Date/Time Other / Lab ID # Sample Location /ID Sampled Notes (For Lab Use Only) A74939-1 AQ 06/07 11 SH-348 6/2/04 11/10 A74939-2 06/02 12:30 -AQ CH-94I 12/30 AQ SH-24D AQ AQ AQ AQ AQ AQ AQ AQ AQ Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice) Matrix: $A = Air S = Soil AQ = Aqueous \pi Other:$ Section No.: 22.0 Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

BEEDE WELLS

Site # 04-000-7307

VC	OCs							
65 samples								
AE-1	SH-22S							
AE-2	SH-22D							
AE-4	SH-22R							
AE-12	SH-23S							
AE-14	SH-231							
AE-17D	SH-23D							
AE-18S	SH-24S							
AE-18D	SH-241							
AE-21	SH-24D							
AE-22	SH-25S							
	SH-25I							
SH-2S	SH-25D							
SH-21	SH-26S							
SH-2D	SH-27S							
SH-3S	SH-28S							
SH-31	SH-29S							
SH-3D	SH-33S							
SH-4S	SH-38S							
SH-4I	SH-41S							
SH-4D	SH-43S							
SH-12S	SH-44S							
SH-14S	SH-56S							
SH-14I	SH-57S							
SH-14D								
SH-15S								
SH-15I								
SH-15D	WP-4							
SH-19S	WP-10							
SH-19I	WP-12							
SH-19D	WP-14							
SH-20S	WP-15							
SH-201	WP-17							
SH-20D	WP-18							
SH-21S								
SH-211								
SH-21D								
* Natural Attanuation	D							

AE-2 AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D SH-43S	ivati	ural Attenuation 27 samples
AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		21 Samples
AE-12 AE-14 AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-2
AE-17D AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
AE-18S AE-18D SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-17D
SH-2S SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		AE-18S
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		AE-18D
SH-2I SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		
SH-2D SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-3S SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I		SH-2I
SH-3I SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-3D SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24I SH-24D		
SH-4S SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-4I SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-4D SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-15S SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		
SH-15I SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-22S SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24S		
SH-22D SH-22R SH-23S SH-23I SH-23D SH-24S SH-24D		
SH-22R SH-23S SH-23I SH-23D SH-24S (SH-24I		
SH-23S SH-23I SH-23D SH-24S SH-24I		
SH-23I SH-23D SH-24S SH-24I		
SH-23D SH-24S SH-24I SH-24D		
SH-24S SH-24I SH-24D		
∜SH-24I SH-24D		
SH-24D		ay: 9.840.
Tuesday of the		Was administration of the second
5H-435		Control of the Contro
		SH-43S

^{*} Natural Attenuation Parameters = Fe, Mn, TKN, Chloride, Sulfate, Nitrate, and Alkalinity

Samplers: Sharon G. Perkins Leah Desmarais

FOR LABORATORY USE ONLY

Physical Inspection of the sample	Yes	No	NA	Inspection Community 10
containers and submitted paperwork		110	INA	Inspection Comments and Sample Information
PROJECT (EPA) # current?		 	 	Project (EPA) # 6(607367
Temperature of the sample or temperature			}	
blank	'			Temperature C
Condition of sample(s) acceptable?		1		C
(Check for leakage, breakage, and	/	:	1	
volume) Do VOA's or Radon have air			ĺ	
bubbles?			<u> </u>	
Was the paperwork submitted adequate				
and completely filled out? Hold times				
acceptable?				
Do the paperwork and sample labels				
agree?				
Preservation listed on the sample				
bottle(s)?				
How did the laboratory receive the				Hand delivered or
sample(s)?				Mail
Was the sample(s) received in a cooler?				Number of Coolers
How many coolers were received?			1	Ice
What was used to lower the temp?				Cold Packs(s)
				Nothing
Weether Oliver		IST BEL	OW TO	D BE COMPLETED ONLY IF APPLICABLE
Was the Client contacted by phone?	1			DateTime
Reason	İ	ļ		
				Initials
Additional Comments:	ł			
		İ	,	
		j	ļ	
16				
If present, was the Custody of Seal intact?				
Was the sample(s) subcontracted? List the	1			Contract Lab:
samples which were sent and tests	1		1	
requested:	ŀ	- 1	1	Date/Time
			ļ	
†		Ì		Name of Staff Releasing Sample:

Completed By:	اللا	Date:	Li	2/2	104	(
	()					

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74939-1

Locator : SH-24S Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW Collectby: DESMARAIS/PERKINS Collection Date: 06/02/2004 11:10

Log in Date

Account #: 04-01-04 : 06/03/2004 14:27

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID :

IRON

MANGANESE

Analyte Results Units RDL EPA Method .05 200 < .05 mg/L .775 mg/L .01 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter = Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74939-2 Category: IN HOUSE

Locator : SH-24I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Log in Date

Collection Date: 06/02/2004 12:30

Collectby: DESMARAIS/PERKINS

: 06/03/2004 14:27

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

MANGANESE

IRON

Analyte Results Units RDL EPA Method < .05 mg/L .05 200 .262 mg/L .01 200

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-24D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

Collection Date: 06/02/2004 11:45 Log in Date : 06/03/2004 14:27

: PLAISTOW Site Collectby: DESMARAIS/PERKINS

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

MANGANESE

IRON

RDL EPA Method Analyte Results Units .05 200 mq/L < .05 200 .01 mg/L .54

Authorized Signature:

Garry Haworth **Inorganies Supervisor**

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

HDES

INVOICE NUMBER: 0026056-IN INVOICE DATE: 06/28/04

07/28/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

0.1	Description	Quantity	Cost	Amount
Sales cd		•		
1FE 1MN	A74939-1 IRON AQUEOUS MANGANESE AQUEOUS	1.000	15.00 15.00	15.00 15.00
1FE 1MN	A74939-2 IRON AQUEOUS MANGANESE AQUEOUS	1.000	15.00 15.00	15.00 15.00
1FE 1MN	A74939-3 IRON AQUEOUS MANGANESE AQUEOUS	1.000	15.00 15.00	15.00 15.00
	REVIEW THIS INVOICE THOROUGHL' BEFORE MONTH'S END; PAYMENT I	Y; MAKE ALL S AUTOMATIC	CHANGES FROM FUND	
	DEFORE HORTH & BILD, INTEREST		Invoice Total:	

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026056

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name:	<u>Beede</u> Site/Town: Plai	stow, NH <u>Contact</u> : Leah Desmarais x 0697	, 3C
Comments:	Collected By & Phone#	S. Perkins x 6805 and Leah Desmarais	s x 0697

Sample Location /ID	Date/Time Sampled	# of Container s	Matrix	Total Fe	Total Mn	Other / Notes	Lab ID # (For Lab Use Only)
AE-12	6/3/04 14:00	1	AQ	V	V		A74977-1 06/03 14:00
SH-22S	11:40		AQ		ĺ		A74977-2 06/03 11:40
2H-39D	11:10		AQ				A74977-3 06/03 11:10
SH-20 R	10:15		AQ				A74977-4 06/03 10:15
SH-235	11:38		AQ				A74977-5 06/03 111-11(
SH-23I	14:32		AQ				A74977-6 06/03 14:32
SH-23D	13:22 12	1	AQ	$ \downarrow $			A74977-7 06/03 13:22
			AQ				
			AQ				
			AQ				
			AQ				
			AQ				

	`	
	AQ	IQ
	AQ	IQ I
Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ic		
Relinquished By Joan Domandunate and Time 6/3/04 /65	25	S Received By Acled Storage Matrix: A= Air S= Soil AQ= Aqueous π Other:
Relinquished By CCCC TOCCE Date and Time 04-0110	0	Section No.: 22.0
Page of Data Reviewed By		Date 6 28

FOR LABORATORY USE ONLY

Physical Inspection of the sample	Yes	No	NA	Inspection Comments and Sample Information	
containers and submitted paperwork		"	1	Inspection Comments and Sample Intompation	
PROJECT (EPA) # current?			1	Project (EPA) # (C) /3/7	
Temperature of the sample or temperature blank				2	
Condition of sample(s) acceptable?		ļ	 	Temperature °C	
(Check for leakage, breakage, and		1	}		
volume) Do VOA's or Radon have air		1	ł		
bubbles?			ŀ		
Was the paperwork submitted adequate			 		
and completely filled out? Hold times			1		
acceptable?			<u> </u>		
Do the paperwork and sample labels			İ		
agree? Preservation listed on the sample		 	ļ. <u></u>		
bottle(s)?			1		
How did the laboratory receive the			!	Hand delivered or	
sample(s)?				Mail Hand delivered or To Colled Hand (Kin.)	
Was the sample(s) received in a cooler?				Number of Coolers	
How many coolers were received?		}	1	Ice	
What was used to lower the temp?				Cold Packs(s)	
			L	Nothing	
W 1 00		LIST BE	LOW T	O BE COMPLETED ONLY IF APPLICABLE	
Was the Client contacted by phone?				DateTime	
Reason				Initials	
Additional Comments:					
If present, was the Custody of Seal intact?					
Was the sample(s) subcontracted? List the				Control	
samples which were sent and tests				Contract Lab:	
requested:				Date/Time	
•		l	ŀ		111/1
	Ì			Name of Staff Releasing Sample:	Markey
	İ				1

Completed By:	TW	Date:_	060400	+
		Date		1

Sample #: A74977-1

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : AE-12

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous : PLAISTOW

Collectby: S PERKINS/L DESMARAIS Account #: 04-01-04 Collection Date: 06/03/2004 14:00

Log in Date : 06/04/2004 10:22 Completion Date: 06/28/2004 Project #: 04-0007307

Misc ID

Analyte '	Result	s Units	RDL	EPA Meth	ıod
IRON	< .05	mg/L	.05	200	
MANGANESE	.622	mg/L	.01	200	

Authorized Signature:

Garry Haworth Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-22S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

P-A = Present/Absent

WMEB

Matrix : Aqueous

: PLAISTOW

Collectby: S PERKINS/L DESMARAIS Collection Date: 06/03/2004 11:40

Log in Date : 06/04/2004 10:22 Account #: 04-01-04 Completion Date: 06/28/2004 Project #: 04-0007307

Misc ID

Analyte Results Units RDL EPA Method .05 200 IRON < .05 mg/L

.065 MANGANESE mg/L .01 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor ug/L = micrograms per Liter

mg/L = milligrams per Liter = Greater Than BDL = Below Detection Limit ug/kg = micrograms per Kilogram = Less Than

pCi/L = pico Curies per Liter mg/kg = milligrams per Kilogram

RDL = Reporting Detection Limit rpt = agency.idxl

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-22D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

: PLAISTOW

Collection Date: 06/03/2004 11:10

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:22

Account #: 04-01-04

Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

Analyte	Result	s Units	RDL	EPA Metho	od.
IRON	<.05	mg/L	.05	200	
MANGANESE	.141	${ m mg/L}$.01	200	

Garry Haworth

Authorized Signature: Inorganies Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-22R

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

: PLAISTOW Site

Collection Date: 06/03/2004 10:15

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:22

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Results Units RDL EPA Method

Analyte IRON MANGANESE

3.5 .128

Authorized Signature:

mg/L mg/L

.05 .01 200 200

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

≈ Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-23S

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 11:38

Collectby: S PERKINS/L DESMARAIS Account #: 04-01-04

Log in Date : 06/04/2004 10:22

Completion Date: 06/28/2004

Misc ID

Project #: 04-0007307

Analyte	Results	Units	RDL	EPA Metho	d
IRON	<.05	mg/L	.05	200	
MANGANESE	<.01	mg/L	.01	200	

Authorized Signature

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Licer

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74977-6

Locator : SH-23I Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 14:32

Collectby: S PERKINS/L DESMARAIS

Log in Date : 06/04/2004 10:22

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte	Result	s Units	RDL	EPA Metho	od
IRON	.526	mg/L	.05	200	
MANGANESE	.245	mq/L	.01	200	

Authorized Signature:

Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

= Less Than

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A74977-7

Locator : SH-23D

Category: IN HOUSE

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/03/2004 13:22 Log in Date : 06/04/2004 10:22

Collectby: S PERKINS/L DESMARAIS

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte Results RDL EPA Method Units IRON .165 mq/L .05 200 MANGANESE .393 200 mg/L .01

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter

Inorganics Supervisor ug/L = micrograms per Lite

= Greater Than

= Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter

mg/kg = milligrams per Kilogram

P-A = Present/Absent

RDL = Reporting Detection Limit

= agency.idxl

NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026057-IN INVOICE DATE: 06/28/04 DUE DATE: 07/28/04

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

Sales cd	Description	Quantity	Cost	Amount
100	A74977-1 IRON AQUEOUS	1.000	15.00	15.00
1FE	-	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS A74977-2	1.000	13.00	10.00
1.00	1	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	10.00
1	A74977-3	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	13.00
1	A74977-4	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	13.00
4	A74977-5	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	15.00
	A74977-6	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	13.00	15.00
	A74977-7	1.000	15.00	15.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS			
	REVIEW THIS INVOICE	THOROUGHLY; MAKE ALL	EDOM ELIMD	
	BEFORE MONTH'S END;	PAYMENT IS AUTOMATIC	ELON EOND	7 210.00
			Invoice Total:	L
				<u> </u>

Make checks payable to:

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount: 210.00

Treasurer State of NH

Project Number: 04-0007307

Invoice Number: 0026057

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES**

Attention: LABORATORY SERVICES UNIT

PO BOX 95

CONCORD NH 03302-0095

NH DES LABORATORY SERVICES LOGIN AND CUSTODY SHEET

(Laboratory Policy: Samples not meeting method requirements will be analyzed at the discretion of the NH DES Laboratory.)

Collected By & Phone#

Program/Client ID: In-House EPA #/Project #: 04-000-7307 System Name: Beede Site/Town: Plaistow, NH	Contact: Leah Desmarais x 0697
---	--------------------------------

Comments:_

4/5

S. Perkins x 6805 and Leah Desmarais x 0697

Total Mn Matrix Date/Time Other / Lab ID # Sample Location /ID Sampled Notes (For Lab Use Only) AQ A75276-1 AE-185 6/7/04 13155 06/07 13:55 AQ A75276-2 AE-18D 15:05 06/07 15:05 AQ A75276-3 SH-35 09:55 06/07 09:55 AQ A75276-4 SH-3I 11175 06/07 11:20 AQ A75276-5 12:40 06/07 12:40 AQ A75276-6 SH-155 1347 A75276-7 AQ SHISI 1122 06/07 11:22 AQ A75276-8 15:03 06/07 15:03 AQ 5H-43 Sdup A75276-9 15:08 06/07 15:08 AQ AQ

	İ
Preservation: Fe/Mn (HNO3), TKN (H2SO4,Ice) others (Ice)	
Relinquished By JOHN DOWN Date and Time U/7/04 17:00 Received By JUKOS Strape Matrix: A= Air S= Soil A	AO= Aqueous π Other:
Relinquished By Storage Date and Time 6/9/04/140 Received For Laboratory By US	Section No.: 22.0
Page of Data Reviewed By	Revision No.: 1 (HWRB) Date: 1-17-01 Page 1 of 1

FOR LABORATORY USE ONLY

Physical Inspection of the sample containers and submitted paperwork	Yes	No	NA	Inspection Comments and Sample Information
PROJECT (EPA) # current? Temperature of the sample or temperature blank				Project (EPA) #
Condition of sample(s) acceptable? (Check for leakage, breakage, and volume) Do VOA's or Radon have air bubbles?	U/			Temperature °C
Was the paperwork submitted adequate and completely filled out? Hold times acceptable?	<i></i>			
Do the paperwork and sample labels agree?	٤٠٠			
Preservation listed on the sample bottle(s)?	V			
How did the laboratory receive the sample(s)?				Hand delivered or Mail
Was the sample(s) received in a cooler? How many coolers were received? What was used to lower the temp?	!			Number of Coolers Ice Cold Packs(s) Nothing
Was the Client contacted by phone?	L	IST BEL	OW TO	BE COMPLETED ONLY IF APPLICABLE
Reason				DateTime
Additional Comments:				Initials
If present, was the Custody of Seal intact?				
Was the sample(s) subcontracted? List the samples which were sent and tests requested:			1.	Contract Lab:
•				Date/Time Name of Staff Releasing Sample:

samples which were sent and tests requested:		Contract Lab: Date/Time Name of Staff Releasing Sample:	
Completed By:いう	Date:_	lat thosy	NA = Not Applicable

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-1 Category: IN HOUSE Locator : AE-18S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collectby: S. PERKINS/L. DESMARIS

Log in Date

Collection Date: 06/07/2004 13:55 : 06/09/2004 12:38

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

IRON MANGANESE Results 53 2.04

Units mg/L mg/L

.25 .05

RDL EPA Method 200 200

Authorized Signature:

Garry Haworth

Inorganics Supervisor

= Less Than

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit

mg/L = milligrams per Liter

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-2 Category: IN HOUSE

Locator : AE-18D Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 15:05

Collectby: S. PERKINS/L. DESMARIS

Log in Date : 06/09/2004 12:38 Account #: 04-01-04

Completion Date: 06/28/2004

Misc ID

MANGANESE

Project #: 04-0007307

Results Units RDL EPA Method .978 mg/L .05 200 .37 mg/L .01 200

Authorized Signatur Carry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-3 Category: IN HOUSE Locator : SH-3S
Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Site : PLAISTOW
06/07/2004 09:55 Collectby: S PERKI

Collection Date: 06/07/2004 09:55 Log in Date : 06/09/2004 12:38 Collectby: S. PERKINS/L. DESMARIS Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID :

Results Units RDL EPA Method

 IRON
 <.05</th>
 mg/L
 .05
 200

 MANGANESE
 .01
 mg/L
 .01
 200

Garry Haworth

Authorized Signature: Inorganics Supervisor

mg/L = milligrams per Liter

ug/L = micrograms per Liter

> = Greater Than

< = Less Than

BDL = Below Detection Limit

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter
RDL = Reporting Detection Limit

mg/kg = milligrams per Kilogram

P-A = Present/Absent

rpt = agency.idxl

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-4 Category: IN HOUSE Locator : SH-3I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW

Collection Date: 06/07/2004 11:20 Log in Date : 06/09/2004 12:38

Collectby: S. PERKINS/L. DESMARIS

Completion Date: 06/28/2004

Account #: 04-01-04

Project #: 04-0007307

Misc ID

MANGANESE

IRON

Results Units RDL EPA Method .109 mg/L .05 200 .054 mg/L .01 200

Garry Haworth

Authorized Signature: Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-5 Category: IN HOUSE

Locator : SH-3D

Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Site : PLAISTOW

Collection Date: 06/07/2004 12:40

Collectby: S. PERKINS/L. DESMARIS

Log in Date : 06/09/2004 12:38

Account #: 04-01-04

Completion Date: 06/28/2004

Project #: 04-0007307

Misc ID

Analyte Results Units RDL EPA Method 2.71 mq/L .05 200 .209 .01 mg/L 200

Authorized Signature:

Garry Haworth

mg/L = milligrams per Liter

ug/L = microgramorganics Supervisor

≃ Greater Than

P-A = Present/Absent

= Less Than

IRON

MANGANESE

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter RDL = Reporting Detection Limit

rpt = agency.idxl

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-15S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Category: IN HOUSE

Collection Date: 06/07/2004 13:47

: PLAISTOW

Collectby: S. PERKINS/L. DESMARIS

Completion Date: 06/28/2004

Log in Date : 06/09/2004 12:38

Account #: 04-01-04

Project #: 04-0007307

Misc ID

Analyte IRON MANGANESE	Results	Units mg/L mg/L	RDL . 05 . 02	EPA Meth 200 200	ođ
------------------------------	---------	-----------------------	----------------------------	-------------------------------	----

Authorized Signature Gamy Haworth

Inorganics Supervisor

ug/L = micrograms per Liter

BDL = Below Detection Limit mg/kg = milligrams per Kilogram

= Greater Than

ug/kg = micrograms per Kilogram

P-A = Present/Absent

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

rpt = agency.idxl

Sample #: A75276-7

Category: IN HOUSE

State of New Hampshire Department of Environmental Services

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-15I Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

= Greater Than

WMEB

Matrix : Aqueous : PLAISTOW

Collection Date: 06/07/2004 11:22 Collectby: S. PERKINS/L. DESMARIS

Log in Date : 06/09/2004 12:38 Account #: 04-01-04 Completion Date: 06/28/2004 Project #: 04-0007307

Misc ID

Analyte	Results	Units	RDL	EPA Meth	od
IRON	<.05	mg/L	.05	200	
MANGANESE	<.01	mg/L	.01	200	

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter ug/L = micrograms per Liter

= Less Than BDL = Below Detection Limit ug/kg = micrograms per Kilogram

pCi/L = pico Curies per Liter mg/kg = milligrams per Kilogram P-A = Present/Absent

RDL = Reporting Detection Limit rpt = agency.idxl

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Locator : SH-43S Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

Sample #: A75276-8

Category: IN HOUSE

Collection Date: 06/07/2004 15:03

: PLAISTOW

Collectby: S. PERKINS/L. DESMARIS

Log in Date Completion Date: 06/28/2004

: 06/09/2004 12:38

Account #: 04-01-04

Misc ID

Project #: 04-0007307

Results Units EPA Method RDL

IRON **MANGANESE**

20.9 1.18

mg/L mg/L .05 .01 200 200

Authorized Signature: Garry Haworth

Inorganics Supervisor

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

ug/kg = micrograms per Kilogram

29 Hazen Drive • PO Box 95 • Concord, NH 03302-0095 (603) 271-3445/3446

Results of Laboratory Analysis

Sample #: A75276-9 Category: IN HOUSE Locator : SH-43S DUP
Descript : PLAISTOW, BEEDE WASTE OIL, MSCA,

WMEB

Matrix : Aqueous

: PLAISTOW Site

Collection Date: 06/07/2004 15:08

Results Units

mg/L

mg/L

Collectby: S. PERKINS/L. DESMARIS

200

200

Log in Date

: 06/09/2004 12:38

Account #: 04-01-04

Completion Date: 06/28/2004

Analyte

MANGANESE

Project #: 04-0007307

.05

.01

Misc ID

IRON

Authorized Signature:

20.8

1.15

Garry Haworth

mg/L = milligrams per Liter

= Less Than

pCi/L = pico Curies per Liter

RDL = Reporting Detection Limit

ug/L = micrograms per Liter

BDL = Below Detection Limit

mg/kg = milligrams per Kilogram

rpt = agency.idxl

= Greater Than

RDL EPA Method

ug/kg = micrograms per Kilogram

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026059-IN INVOICE DATE: 06/28/04 DUE DATE:

Attn:

RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 1

07/28/04

Sales cd	Description	Quantity	Cost	Amount
		Guaritity		Amount
1 00	A75276-1			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
1 00	A75276-2			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
1 777	A75276-3			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
1	A75276-4			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-5			
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-6			10.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	A75276-7			13.00
1FE	IRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000	15.00	15.00
	RA75276-8	-		13.00
1FE	BIRON AQUEOUS	1.000	15.00	15.00
1MN	MANGANESE AQUEOUS	1.000		-15.00 T
			15.00 Invoice Total:	L

Make checks payable to: **Treasurer State of NH**

PLEASE RETURN BOTTOM WITH PAYMENT

F	Ple	ase	рa	y th	is a	amo	unt	:
S			_	_			_	٦
Ψ								

Project Number: 04-0007307

Invoice Number: 0026059

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT PO BOX 95 CONCORD NH 03302-0095

CONTINUED

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** 29 HAZEN DRIVE PO BOX 95 CONCORD, NH 03302-0095 (603) 271-3445

INVOICE NUMBER: 0026059-IN INVOICE DATE: 06/28/04 DUE DATE:

Attn: RICHARD PEASE

INVOICE

BEEDE WASTE OIL- 2596 RIFS PLAISTOW

PAGE: 2

07/28/04

Sales cd	Description	Quantity	Cost	Amount
1FE 1MN	A75276-9 IRON AQUEOUS MANGANESE AQUEOUS	1.000 1.000	15.00 15.00	15.00 15.00
	REVIEW THIS INVOICE THOROUGH BEFORE MONTH'S END; PAYMENT	ILY; MAKE ALL CHA IS AUTOMATIC FRO	NGES M FUND	┌ <u></u> 270.00 ┐
			Invoice Total:	

Make checks payable to: Treasurer State of NH

PLEASE RETURN BOTTOM WITH PAYMENT

Please pay this amount:

Project Number: 04-0007307

Invoice Number: 0026059

NEW HAMPSHIRE DEPARTMENT OF **ENVIRONMENTAL SERVICES** Attention: LABORATORY SERVICES UNIT PO BOX 95 CONCORD NH 03302-0095